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This paper presents the reverberation matrix method for wave propagation in
a multi-layered liquid. First the local scattering matrix and phase matrix for the
re#ected and refracted waves are derived at each interface of two layers in terms of
local co-ordinates. The local matrices of all layers are then stacked to form global
scattering and global phase matrices. The product of these two matrices together
with a global permutation matrix gives rise to the reverberation matrix R which
represents the propagation of steady state waves through the multi-layered
medium. By expanding the matrix [I!R]~1 into a power series and applying the
inverse Fourier transform, we then derive the ray integrals for transient waves
generated by a column of point sources and propagating through multi-re#ected
and refracted paths in the medium. The ray integrals so derived are particularly
suitable for numerical calculations by applying the Cagniard method.
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1. INTRODUCTION

The propagation of sound in strati"ed liquid was measured and analyzed as early
as 1940s. A complete report of experiments in ocean, observations and
mathematical analysis was published after World War II by Ewing et al. [1]. In that
report, Pekeries proposed a layered liquid model to analyze the experimental data
of sound waves in shallow water. The propagation of transient waves is represented
by a double integral of the steady state wave function, one with respect to the wave
number i and the other with respect to the frequency u, and the integration can be
carried out by two procedures. One is called the normal-mode method and the
other is called the ray method. His theory and analysis formed the basis for much of
later investigations, as reviewed by Tolstoy and Clay [2] and Brekhovskikh [3].

In the mean time, the theory and analysis were also applied to layered solid
model for the Earth. The dispersion relation for steady state waves in multilayered
media was formulated in matrix form by Thomson [4] and Haskell [5], and the
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analysis of the numerical evaluations of the dispersion matrix for various layered
models was summarized by Ewing et al. [6]. Many other matrix formulations for
the dispersion relation were proposed later, and they could all be considered as
special cases of general propagator matrices by Gilbert and Backus [7]. For
transient wave analysis, Kennett and Kerry [8] developed the re#ection matrix
formulation for wave propagating from the source to receiver to analyze the seismic
waves in a strati"ed half-space.

In 1980s Lu and Felsen [9] presented a Green matrix method to analyze waves in
multilayered media. Their formulation is particularly suitable for the hybrid
normal mode-ray analysis, but it is not convenient for applying the Cagniard
method to evaluate the transient waves precisely along generalized ray paths.
Recently, Howard and Pao [10] developed a reverberation matrix method for the
scattering of one-dimensional waves at the structural joints and the multire#ections
of waves between the joints of a truss or frame. In this article, their method
is extended to study the propagation of sound waves in a layered liquid. The
matrix formulation was developed originally for analyzing the transient waves in
trusses and frames. The method as presented is simple to interpret physically, and
can be easily adopted to analyze the transient waves by applying the Cagniard
method.

The formulation of the reverberation matrix will be discussed in the next three
sections. A set of local co-ordinates is introduced for each layer. The wave potential
in each layer is represented and transformed into the spectral domain by applying
Fourier transform and Hankel transform (section 2). In the spectral domain, the
scattering matrix for transferring arrival waves to departure waves at an interface
or a boundary is derived for appropriate boundary and continuity conditions
(section 3). A reverberation matrix through the multilayered medium is then
formulated from the product of global scattering matrix, phase matrix and
permutation matrix (section 4). In section 5, transient waves at multiple receivers
are expressed by inverting the Hankel and Fourier transforms. The integrals of
inverse transform may be evaluated by the normal-mode method, ray expansion
method or hybrid method. Section 6 shows a numerical example, and the "nal
section contains a conclusion.

2. AXISYMMETRIC SOUND WAVES IN A LAYERED LIQUID

Consider a multilayered liquid separated by parallel planes
z"ZJ (J"0, 1, 2,2, N), where the axisymmetric co-ordinate system (r, z) is
shown in Figure 1. All sources are assumed to be located at an interface between
two layers. If the source is situated at the interior of a layer, then an additional
interface passing the layer is added arti"cially to divide the original layer into two
portions of equal material properties. We shall designate the plane interface with
I, J, K ,2 and layers with two capital letters. All physical quantities at the interface
z"ZJ will carry the superscript J; those at the layer bounded by two adjacent
interfaces z"ZJ and z"ZK carry two superscripts JK. Thus, the mass density,
bulk modulus and sound speed in the layer are denoted by oJK, kJK, cJK; the force
applied at the interface z"ZJ by the vector fJ.



Figure 1. Geometry and co-ordinates in a multilayered medium.
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In this section, however, we shall omit all superscripts for wave quantities in each
layer.

The sound wave pressure p and the particle velocity along the radial and azimuth
co-ordinates, (u, w), are determined respectively from the wave potential /(r, z, t) by
the relations
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, (1)

The wave function /(r, z, t) satis"es the wave equation
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where c"(k/o)1@2.
The Fourier transform of /(r, z, t) in time variable t and the inverse Fourier

transform of /M (r, z, u) are given by

/I (r, z, u)"P
=

~=

/ (r, z, t)e*ut dt, (3)
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/I (r, z, u)e*ut du. (4)
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The Hankel transform of /I (r, z, u) and the inverse Hankel transform of /K (i, z, u)
are given by

/K (i, z, u)"P
=

0

/I (r, z, u)J
0
(ir) r dr, (5)

/I (r, z, u)"P
=

0

/K (i, z, u)J
0
(ir)i di. (6)

By applying Fourier transform and Hankel transform, equation (2) is reduced to

d2/K
dz2

#a2
j
/K "0, (7)

where a"(u2/c2!i2)1@2. The solution for the equation can be expressed as

/K "aL e~*az#dK e*az, (8)

where aL and dK are unknown coe$cients. Furthermore, the twice transformed
pressure and vertical velocity are given by

pL "iuo/K , wL "!

d/K
dz

. (9)

3. SCATTERING MATRICES FOR WAVES AT INTERFACES

We restore the superscripts to all physical quantities and introduce a set of local
co-ordinates (rJK, zJK) for each layer above (K"J!1) and below (K"J#1) the
interface J, as shown in Figure 1. Because of symmetry, we have

rJ(J~1)"rJ(J`1)"r (10)

and

zJK"hJK!zKJ, (11)

where hJK"hKJ is the thickness of the layer JK. Within the layer JK, the two
superscripts for /, o and c are interchangeable. For convenience, the material
parameters of medium in the jth layer are also represented by subscripts, such as
o
j
, c

j
,2 , etc.



REVERBERATION MATRIX METHOD 747
3.1. LOCAL SCATTERING MATRIX AT INTERFACE J

From equation (8), the potentials in the two adjacent layers at interface J are
expressed respectively by

/K J(J~1)(k, zJ(J~1), u)"aL J(J~1)e~*ajzJ(J~1)
#dK J(J~1)e*aJzJ(J~1),

/K J(J`1)(k, zJ(J`1), u)"aL J(J`1)e~*aj`1zJ(J`1)
#dK J(J`1)e*aJ`1zJ(J`1). (12)

Associated with the time factor e~*ut in equation (4), the term with unknown
amplitude dK JK represents a wave departing from the interface J and travelling in the
positive direction of zJK; and that with aL JK represents a wave arriving at the
interface J and travelling in the negative direction of zJK. aL JK and dK JK are unknown
functions of i and u, which will be determined by the boundary conditions and the
continuity conditions at the interfaces.

If an explosive source with time function f (t) is placed at r"0, z"ZJ, the origin
of two local co-ordinates, the source function may be represented by
(1/2nr)d(r!0)d(z!0J ) f (t). The pressure should be continuous at the interface,
but the velocity is not. Because the #uid above and below the source moves in
opposite directions, the vertical velocity will jump across the interface. We can
obtain two continuity conditions at the interface.

pL J(J`1)(i, 0, u)!pL J(J~1) (i, 0, u)"0,

wL J(J`1)(i, 0, u)#wL J(J~1)(i, 0, u)"gJ
w
, J"1, 2,2 , N!1, (13)

where gJ
w
"fM (u)/4n[c~2

j`1
#c~2

j
]. Substituting equations (12) and (9) into the

previous equations, we obtain a set of equations for the unknown coe$cients
aL J(J~1), aL J(J~1), dK J(J~1) and dK J(J`1), which is expressed in matrix form as follows:

AJa; J#DJd) J"g( J(i, u), (14)

where a( J and d) J are unknown vectors, AJ and DJ are 2]2 matrices, and g( J is the
external force vector, i.e.,

a( J"(aL J(J~1), aL J(J`1))T, d) J"(dK J(J~1), dK J(J`1))T,
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j
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w
)T,
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Obviously, both components of the force vector vanish when no source is at the
interface.

Solving d) J in terms of unknown vector a( J and a given source vector g( J, we "nd

d) J"SJa( J#s( J (i, u), J"1, 2,2 , N!1, (15)

where
SJ"!(DJ)~1AJ

"

1
DJ C

o
j`1
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j
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j
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j
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j
D , (16)

DJ"o
j
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j`1

#o
j`1

a
j

and

s( J (i, u)"(DJ)~1g( J(i, u). (17)

The matrix SJ is called the scattering matrix at the Jth interface, the element of
which relates an incident wave (arrival) to the transmitted or re#ected wave
(departure) in the Jth interface. The s( J is called the source wave vector, which
represents the waves emitted by the explosive source at the interface. The scattering
of waves at the interface is shown in Figure 2.

When the media of layer J and layer (J#1) are the same, the matrix SJ is
reduced to

SJ"C
0

!1
!1

0D . (18)

If the layered liquid is bounded at the top, z"Z0"0, by a pressure free surface,
and at the bottom, z"ZN, by a rigid plane, both the wave vectors a( and
d) degenerate into scalars (vectors with a single element). The scattering matrices S0
and SN also degenerate into matrices with a single element, which can be derived by
taking appropriate limit values of density and sound speed for one adjacent layer,
zero density and zero speed for the upper layer of the free surface, and in"nite
density and in"nite wave speed for the lower layer of the rigid plane. The limit
values are

dK 0"S0aL 0#sL 0(i, u), S0"!1,

dK N"SNaL N#sL N(i, u), SN"1. (19)

Hence aL 0"dK 01, dK N"dK N(N~1), aL 0"aL 01 and aL N"aL N(N~1). We assume no
explosive source at the free or rigid surfaces; the source wave vectors sL 0 and sL N
vanish.



Figure 2. Scattering of waves at interface J.
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If the bottom plane z"ZN~1 is bounded by a semi-in"nite liquid space, we let
the plane z"ZN recede to in"nity and the thickness hN(N~1)"h(N~1)N approach
in"nity. From the radiation condition, the wave number in the semi-in"nite space
becomes complex, a(N~1)N"aN(N~1)"[i2!u2/(cN(N~1))2]1@2, and the wave
amplitude dK (N~1)N and aL N(N~1) must vanish. The elements of the 2]2 scattering
matrix SN~1 should be modi"ed accordingly.

3.2. GLOBAL SCATTERING MATRIX FOR THE MULTILAYERED MEDIUM

Combining 2N equations in equations (15) and (19), we can construct a system of
equations for the entire multilayered medium in the following form:

A
dK 0
d) 1

d) 2

F

d) N~1

dK N B"
S0 0 0 2 0 0

0 S1 0 2 0 0

0 0 S2 2 0 0

F F F } F F
0 0 0 2 SN~1 0

0 0 0 2 0 SN
A

aL 0
a( 1

a( 2

F

a( N~1

aL N B#A
sL 0
s( 1

s( 2

F

s( N~1

sL N B . (20)

In compact notation, the previous equation is written as

d)"Sa(#s( (i, u). (21)

The vector with 2N elements, d) , which is named the global departing wave
vector, represents waves departing from all interfaces downward and upward, and
the vector a( , which is named the global arriving wave vector, represents waves
arriving at all interfaces upward and downward. The square matrix S which is
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a block-diagonal matrix of dimension 2N is called the global scattering matrix. The
vector s( with 2N elements which is called the global source vector represents waves
emitted from sources located at r"0, z"ZJ (J"1, 2,2 , N!1).

Notice that two local co-ordinates (rJ(J~1), zJ(J~1)) and (rJ(J`1), zJ(J`1)) are used
to analyze waves arriving and departing from the same interface; the amplitude
coe$cients are treated separately from the phase functions. In this section, the
elements of SJ represent the re#ection or transmission coe$cients for waves
incident at the interface J are the same as those calculated from a single
co-ordinate. Since both vectors a( and d) are unknown quantities, we need an
additional equation relating d) to a( .

4. REVERBERATION MATRIX

The additional equation is supplemented by "rst noting that a wave departing
from one side of the layer becomes the wave arriving at another side of the same
layer. The amplitudes for the waves at both sides, however, di!er by a phase shift
factor as follows:

aL J(J~1)"e*ajhjdK J(J~1)J,

dK J(J~1)"e~*ajhjaL (J~1)J, j"1, 2,2 , N. (22)

We introduce a new local vector at the Jth interface, d) *j, and a new global vector
d) * for the departing waves as

d) *j"(dK (J~1)J, dK (J`1)J)T, d) *"(dK *0, d) *1, d) *2 ,2 , d) *(N~1), dK *N)T. (23)

Here dK *0"d) 10 and dK *N"dK (N~1)N. The global vectors d) * and d) contain the same
elements but are sequenced in di!erent vectors. We may express this equivalence
through a permutation matrix U,

d< *"Ud) (24)

where U is a 2N]2N block-diagonal matrix composed of N same 2]2 sub-matrix
; and other vanishing elements as

U"

; 0 2 0

0 ; 2 0

F F } F

0 0 2 ;

, ;"A
0
1

1
0B .

Furthermore, all elements of wave vector a( are related to those of the vector d) * as

a("P(i, h, u)d) *, (25)
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where the total phase shift matrix P(i, h, u) or P(h) (2N]2N) is a block-diagonal
matrix, which is given by

P(h)"

P(h1) 0 2 0

0 P(h2) 2 0

F F } F

0 0 2 P(hN)

, P(hj )"A
e*(ah)J

0
0

e*(ah)JB . (26)

Substituting equation (24) into equation (25), we "nd the second equation that
relates the vectors a( and d) to be

a("P(h)Ud) . (27)

Solving equations (21) and (27) simultaneously, we "nally obtain

d)"[I!R]~1s( (i, u), (28)

a("P(h)U[I!R]~1s( (i, u), (29)

where we have introduced the reverberation matrix R de"ned by

R (i, u)"SP (h)U. (30)

The matrix [I!R(i, u)]~1 relates the response of the multilayered medium to
the excitation s( (i, u) in the frequency-wavenumber domain. The dispersion
relation for the resonant waves in the multilayered medium is given by

det[I!R(i, u)]"0. (31)

The determinant in equation (31) which is based on evaluation of scattering
waves at each interface is in a form di!erent from that derived by the Thomson and
Haskell method (1950) which is based on the evaluation of the wave propagating
from one interface to another. They should, however, yield the same numerical
results for the dispersion relations in the u!i plane.

The frequency response for monochromatic waves in the layered medium is
determined by completing inverse Hankel transform in equation (6), after
substituting a( and d) into equation (8). The transient response of the same medium is
determined by completing the inverse Fourier transform.
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5. TRANSIENT WAVES IN THE MULTILAYERED LIQUID

Once the coe$cient vectors d) and a( are known from equations (28) and (29), the
complete list of potentials in the frequency domain will be expressed as

U) (i, z, u)"[P(h!z)U#P(z)][I!R (i, u)]~1s( (i, u), (32)

where

U) "/K 01(i, z01, u), /K 10(i, z10, u) ,2 , /K (N~1)N(i, z(N~1)N, u), /K N(N~1)

(i, zN(N~1), u)NT (33)

and vertical co-ordinate vector of receivers

z"Mz01, z10, z12, z21 ,2, z(N~1)N, zN(N~1)NT. (34)

Applying inverse Hankel transform and Fourier transform, we can thus obtain
the transient responses at N receives to the sources, i.e.,

U (r, z, t)"
1
2n P

=

~=

U) (r, z, u)e~*ut du, (35)

where

U1 (r, z, u)"P
=

0

U) (i, z, u) J
0
(ir)i di (36)

and

J
0
(ir)"

J
0
(ir01) 0 2 0 0

0 J
0
(ir10) 2 0 0

F F } F F

0 0 2 J
0
(ir(N~1)N ) 0

0 0 2 0 J
0
(irN(N~1))

.

It is assumed that no two receivers are located in the same layer. We rewrite
equation (35) in detail as

U(r, z, t)"
1
2n P

=

~=

e*ut du P
=

0

[P(h!z)U#P(z)][I!R(i,u)]~1s( (i,u)J
0
(ir)i di.

(37)

For each element of the wave potentials in equation (37), the double-integral
representation of the wave potentials, /(r, z, t), can be calculated by either the
traditional spectra method or the ray method, both methods being "rst proposed
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by Pekeries (1949). The ray method is particularly suitable if we expand the transfer
function in a Neumann series

[I!R]~1"I#R#R2#2#RM#[I!R]~1RM`1. (38)

Substituting equation (38) into equation (37),

U(r, z, t)"
M
+

m/0

U(m)(r, z, t)#U(M`1)
R

(r, z, t), (39)
Figure 3. Rays with reverberations: (a) P(z)R0s; (b) P(z)Rs; (c) P (z)R2s.



Figure 3. Continued
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where

U(m)(r, z, t)"
1
2n P

=

~=

e~*ut du P
=

0

[P(h!z)U#P (z)]Rms( (i, u)J
0
(ir) i di (40)

and

U(M`1)
R

(r, z, t)"
1
2n P

=

~=

e~*ut du P
=

0

[P(h!z)U#P(z)][I!R]~1RM`1

]s( (i, u)J
0
(ir) i di. (41)

The integrals can thus be evaluated term by term to obtain the &&generalized ray
solution''. The term U(0) (r, z, t) containing the factor R0 represents the waves
originally generated by the applied forces, which propagate away from the sources
to the receivers at (r, z). The term U(1)(r, z, t) containing the factor R represents the
"rst set of re#ections and transmissions of the direct waves in the multilayered
liquid. In general, term U(m)(r, z, t) containing the factor Rm represents the set of
m times re#ections and transmissions of the source waves in the multilayered liquid.
As an example, the rays arriving at the receivers for R0, R, R2 in the three-layered
liquid and a single point source at "rst interface are shown in Figure 3.
The double-ray integrals can be calculated by applying the Cagniard method
[11}13].

U(r, z, t) in equation (39) can be evaluated by a recently developed hybrid
method which combines the normal-mode and ray methods. In general, the former
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integrals U(m) (r, z, t) are generalized rays as formula (40), and the last integral, the
inclusion of the remainder, may be obtained by normal-mode and the steepest
descent method.

6. NUMERICAL EXAMPLE

For illustration, an example of a three-layer model of the shallow water as shown
in Figure 4 is calculated. The point source with intensity of d(r!0)d (z!13)3)]
1)E5/2nr is towed at a depth of 13)3 km, and three receivers A, B and C, 15)5 km
horizontally from the point source, are "xed at a depth of 10, 32)6 and 65)6 km,
respectively. The three-layer model is divided into a four-layer model in order to
Figure 5. Response caused by the ray with respect to R at the receiver A.

Figure 4. Three-layered model of shallow water with h
1
"22)6 km, h

2
"20)3 km, h

3
"22)6 km;

c
1
"1500 m/s, c

2
"1)12c

1
, c

3
"1)24c

1
; o

1
"1000 kg/m3, o

2
"o

3
"2o

2
. The source was towed at

a depth of 13)3 km and three receivers locate at A(15)5, 10), B(15)5, 32)6) and C(15)5, 65)5).



Figure 6. Response caused by the ray with respect to R3 at the receiver A.

Figure 7. Response caused by the ray with respect to R5 at the receiver A.

Figure 8. Response caused by the ray with respect to +5
m/0

Rm at the receiver A.
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put the source point at the interface. The acoustical pressure at the receivers with
respect to time is taken into account in the example. The responses with respect to
R, R3, R5 at the receiver A are shown in Figures 5}7, respectively, and that with
regard to +5

m/0
Rm at the receiver A is given in Figure 8. The responses with respect

to +1
m/0

Rm, +2
m/0

Rm at receivers B and C are shown in Figures 9}12 respectively.



Figure 9. Response caused by the ray with respect to +1
m/0

Rm at the receiver B.

Figure 10. Response caused by the ray with respect to +2
m/0

Rm at the receiver B.

Figure 11. Response caused by the ray with respect to +1
m/0

Rm at the receiver C.
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In Figure 5 and 6, the wave re#ected one time from the surface and the waves
re#ected or transmitted three times from the surface and interfaces arrive at the
receiver A at 18)47 and 29)67 s, respectively, which are the same as those obtained
by the ray theory. In Figures 8}12, the summation of some rays are shown, and it is



Figure 12. Response caused by the ray with respect to +2
m/0

Rm at the receiver C.
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not di$cult to "nd the arrival time of the re#ected or transmitted waves. In
particular, Figure 11 shows no response at receiver C from waves which su!er no
scattering or scattered only once.

7. DISCUSSION & CONCLUSION

This paper presents the method of reverberation matrix (R matrix) for analyzing
transient waves in a multilayered medium generated by a column of point sources.
The waves within two adjacent layers are speci"ed in terms of a two-element vector
a( J for the waves arriving at the interface J, and another vector d) J for two waves
departing from the same interface. By introducing a set of local co-ordinate
originating from the interface, the local scattering matrix SJ (re#ection and
transmission) relating a( J to d) J is then determined. A source vector s( is also
calculated if the interface contains a point source. The local matrices of all layers
are then stacked to form the global scattering matrix for the entire medium.

Since within each layer the arriving waves at one interface is related to the
departing waves at another interface by a phase shifting factor, the reverberation
matrix R is then formulated by multiplying the global scattering matrix with the
phase shift matrix and another permutation matrix as shown in equation (30). The
R matrix characterizes the multiple re#ections and transmissions of all waves in
each and every layer, and the dispersion relation for waves in the medium is given
by det(I!R)"0 (equation (31)). The Hankel}Fourier transformed response at any
receiver can then be calculated from the values of a( or d) , as shown in equations (28,
29). The inverse transform is accomplished without evaluating the residues by
expanding (I!R)~1 into a power series of R. The integral containing factor Rm

represents the wave that is re#ected by the interfaces or transmitted through the
interfaces m times along a speci"c path. The double integrals of each term in series
expansion can then be evaluated by applying the Cagniard method. When the
method of propagator matrix is applied, a state vector which is composed of
normal components of stress and velocity at each horizontal plane is introduced,



REVERBERATION MATRIX METHOD 759
and the state vector at the plane is related to that through the transfer matrix
(T matrix), u( (z)"T(z, z

j
)u( (z

J
). For a multilayered medium with interface

J"1, 2, 3,2 , N, the state vector u( (z
N
) is related to that at z"z

0
by the product of

T matrices through the applications of continuity conditions at the interfaces. The
unknown variables of the state vector at each plane are then determined by
reformulating the matrix product to satisfy the boundary conditions at both ends.

In comparison with the method of reverberation matrix, the state vector can be
calculated from the wave vector a( and d) within each layer, and the latter are
determined from the scattering matrix for which the boundary conditions at both
ends had already been satis"ed. The dispersion relation (frequency equation) is thus
given directly from (I!R) without reformulating the matrix. This, of course, is at
the expense of increasing the size of matrices. Furthermore, the R matrix
formulation is particularly convenient for analyzing the transient or steady state
waves along the speci"c ray paths, and the arrival time of a wave through the path
can readily be calculated.

Only a column of point sources, one in each layer, is considered in this article.
Additional point sources located in the same column can be treated by introducing
"ctitious interface through the source at the expense of increasing the number of
layers. A number of sources located arbitrarily in the medium can also be treated if
the three-dimensional Cartesian co-ordinate system is adopted to reformulate the
local scattering matrix. The method can also be extended to analyze the
reverberation of elastic waves (P and S-wave) in layered solid media.
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